neurop.Problem.TSPProblem¶
- class neurop.Problem.TSPProblem(graph: Graph, initializer=None, penalty=10)¶
Bases:
BaseProblem
Traveling Salesperson Problems
- __init__(graph: Graph, initializer=None, penalty=10)¶
Initializes the TSP problem.
- Parameters:
problem (OptProblem) – the optlang problem
initializer (_type_, optional) – function to initialize the parameters of the problem. Defaults to None, which means that parameters will be randomly initialized.
Methods
__init__
(graph[, initializer, penalty])Initializes the TSP problem.
convert_to_model
(model_type[, backend])Converts the problem to a model of given type, if supported.
evaluate_constraints
(params)Evaluates the constraints of the problem for a given set of (binary) parameter values.
evaluate_objective
(params)Evaluates the objective function of the problem for a given set of (binary) parameter values.
supports_model
(model_type)to_qubo
([backend])- convert_to_model(model_type, backend=None) BaseModel ¶
Converts the problem to a model of given type, if supported.
- Parameters:
backend (Backend, optional) – The backend for which to derive the QUBO form. Defaults to None, which means no special requirements are imposed on the Q matrix.
- Raises:
ValueError – May return a ValueError if the problem cannot be converted to the required model type.
- Returns:
returns the QUBO matrix
- Return type:
np.ndarray
- evaluate_constraints(params: ndarray) Iterable[bool] ¶
Evaluates the constraints of the problem for a given set of (binary) parameter values.
- evaluate_objective(params: ndarray) float ¶
Evaluates the objective function of the problem for a given set of (binary) parameter values.